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The two-dimensional dielectric-breakdown-type crack-growth models are studied and used to model

the formation of earthquake faults.

modes II and III as well as a mixture of modes II and III, with D =Dy

It is found that three kinds of earthquake faults exist, including

=2, D=Dy=1.71,

D =PyDy+ Py Dy =1.71-2, respectively. These predictions are in good agreement with the experi-

mental data.

PACS number(s): 64.60.Ak, 62.20.Mk, 91.30.Px

I. INTRODUCTION

Since the introduction of the model of diffusion-limited
aggregation (DLA) [1], the extensive studies have proved
that this model correctly describes many physical phe-
nomena, such as dielectric breakdown (DB) [2], viscous
fingering, electrodeposition, and dendritic growth [3].
Recently, crack propagation has also been considered
from this point of view [4]. But DB-type growth patterns
do not appear in many crack propagation phenomena.
The reason is probably that due to the Griffith’s condi-
tion, the crack will evolve from DB-type patterns (at
small sizes) into spiky structures (at large sizes) [5]. But
in the earth’s crust the stresses are very high and the
Griffith’s condition is not important. In this case we ex-
pect that DB-type growth patterns should appear. It has
been found [6,7] that the spatial distribution of earth-
quakes is fractal. In particular, in a laboratory model of
the earth’s crust Sornette, Davy, and Sornette [8] found
that complex fractal patterns of faults are formed with
D =1.7010.05, suggesting a striking resemblance with
DB. In this paper DB-type crack-growth (DBCG) mod-
els are introduced to model the formation of earthquake
faults.

II. DB-TYPE CRACK-GROWTH MODELS

Most earthquakes occur in the brittle surface layer of
the earth’s crust with a depth of 10-20 km. This brittle
layer can be considered to be two dimensional 2D). We
introduce the 2D DBCG models [4] to model the forma-
tion of earthquake faults. For simplicity, the medium is
assumed to be elastic and isotropic. Crack-growth speeds
V, are related to the tangential tensions 7 at the crack
surfaces by ¥, ~|7|7 (0<79 < «). Since for DB the case
n=1 is the most realistic case for the DB experiment [2],
for DBCG we naturally let n=1.

In order to make predictions of fractal dimensions for
DBCG, we first review the Turkevich-Scher theory [9].
This theory determines the fractal dimension of a DLA
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cluster from the growth probability of the maximally ex-
tended portion of the cluster. Consider a DLA cluster, if
one growth takes place at the tip of the maximally ex-
tended portion, then the radius of the cluster becomes
R —R +a, here a being the inner cutoff length. The
probability that this event takes place is P, ~R ™",

Onin being the growth exponent. On the other hand, 1f
this growth takes place elsewhere, the radius of the clus-
ter remains unchanged. Thus if dN growths take place,
on the average, dN P, growths will take place at the tip
of the maximally extended portion, then

dR=adN P, . (1)
Making use of N ~R P, we obtain fractal dimension
D=1 +amin . (2)

This relation is well founded and confirmed by computer
simulations.

Furthermore, a,;, can be related to the singularity ex-
ponent of the electric field at the tip of the maximally ex-
tended portion of the cluster. The DB problems are
governed by Laplace equation A®=0, ® being the elec-
tric potential, at the cluster ®=0, at infinity ®=1. At
the surface of the cluster, the growth speeds

~|V®-7|. For a coarse-grained description the maxi-
mally extended portion of the cluster can be modeled as a
wedge with the angle 0, as shown in Fig. 1. The electric
field at the wedge tip can be solved exactly by conformal
mapping method. The result is

|V 7| ~r?, 3)

where 6= —(7—0) /(27— 0).
Thus the growth probability at the wedge tip is
[ va-rldr (a/&)'*® )
~ . o ~\a >
[ V-nldr

where £ is an outer cutoff length. For a self-similar clus-
ter £~R, thus
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FIG. 1. The wedge.

Ppo~R™ITY, (5)
D=2+5=3T—0. (©)

The wedge angle 0 cannot be determined from a first
principle. By comparison with simulation value
D =1.71, we find 6=427/71.

The above procedure can be extended to the 2D
DBCG problems. The crack problems can be decom-
posed into mode I (opening mode), II (sliding mode), as
well as III (tearing mode) [10]. For a coarse-grained
description the maximally extended portion of a 2D
DBCG cluster can be modeled as a sharp notch with the
angle ¢. The stresses near the notch tip are

oij~r" 7

where A is the stress exponent (see the Appendix). A is
given by, for modes II and I,

sin(A+ 1) 27 —@)==x(A+1)sin(27— @) (8)
and for mode III
A= (= 10,1,2,...). 9)
2m—¢@

The dominant contribution to the notch tip stress and
displacement fields occurs for A ;,> —1. The curves of
Amin @s a function of ¢ are shown in Fig. 2. Since for DB,
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FIG. 2. A, as a function of ¢ for modes I, II, and III.

V,~|V®-7| and for DBCG, V, ~ |7/, then from Egs. (3)
and (7), we find 6=A_,;,. Thus from Eq. (6), we obtain the
fractal dimensions of DBCG of three modes

D =2+ A @) . (10)

mode

If the boundary conditions at infinity are uniform, the
notch angle ¢ of DBCG of three modes should be equal
to the wedge angle 6 of DB, i.e., p=60=427/71. This as-
sumption comes from this argument: Since both DB and
DBCG models of mode III are governed by the same
growth law and the Laplace equation, if at infinity both
models have the same uniform boundary conditions, they
should belong to the same universality class. The validity
of this assumption can be confirmed later. In this case
the fractal dimensions of DBCG of three modes are
D g =2+Ay, (¢p=427/71), ie., D;=1.575,Dy;=2,
Dy;=1.71. The fractal dimensions of DBCG are
D =PD+PyDy + Py Dy, here Py, Py, and Py being
the probabilities that modes I, II, and III appear, respec-
tively.

If the boundary conditions at infinity are not uniform,
the crack will grow faster in certain preferred directions.

TABLE I. Summary of DB and DBCG models.

DBCG
DB III LII

Equations AP=0 Au;=0 AAx=0
Growth laws v, ~ V-7 V,~I7l
Fields at the V7| ~r® oy~rt
wedge or =-§%_n—£— sin(A+1)27r—¢@)
notch dip 5=— 27;__"9 = +(A+ Dsin(27—g)

(n=-—1,0,1,2,...) (for modes II and I)
Fractal D oge =2+ Amin(@)

D=2+38

dimensions D =P D{+PyDy+ Py Dy
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The cluster will evolve into a needle shape. The asymp-
totic notch angle ¢p—0, D, 4. =2+ A (@)—3, D—3.
Both models are summarized in Table 1.

Let us compare these predictions with computer simu-
lations. Louis and co-workers [4] have performed exten-
sive computer simulations of 2D DBCG models on a tri-
angular lattice. Under a uniform dilation boundary con-
dition it was found that D =1.55. In the continuum limit
the crack growth belongs to crack mode I. The theoreti-
cal value of fractal dimension is D =1.575. Under a
shear boundary condition it was found that D =1.60.
Taguch [11] performed simulations of 2D DBCG models
of mode III. A shear boundary condition was used. It
was found that D =1.55+0.05. In the latter two cases
the boundary conditions are not uniform. The theoreti-
cal values of the asymptotic fractal dimensions are D = 2.
From these examples we conclude that the theoretical
values of fractal dimensions of 2D DBCG models are in
good agreement with simulations.

III. THE FRACTAL DISTRIBUTION
OF EARTHQUAKE FAULTS

Kagan and Knopoff [6] studied the spatial distribution
of earthquakes and found D =2, which they interpreted
as meaning that earthquakes occur on planes. Also,
Sahimi, Robertson, and Sammis [7] analyzed the seismic
data and found that the spatial distribution of hypo-
centers is fractal over at least one order of magnitude
with D =1.8, for which they proposed a percolation in-
terpretation.

Now we use the 2D DBCG models to model the for-
mation of earthquake faults that locate in the brittle sur-
face layer of the earth’s crust. In the crust the stresses
are compressible. Thus earthquake faults of crack mode
I do not exist. The boundary conditions at infinity can be
regarded as the uniform. In general, the stress fields of
earthquake faults are those of mixed-mode problems of
modes II and III. Therefore, there exist three kinds of
earthquake faults: (1) mode II, with D =Dy =2, which
we believe to be what Kagan and Knopoff [6] discovered,;
(2) mode III, with D =D ;;=1.71; (3) mixture of modes
II and III, with D =PyDy+PyDy=Dy~Dy
=1.71-2, which we believe to be what Sahimi et al. [7]
discovered. Here Py and Py are the probabilities that
modes II and III appear, respectively. Py and Py de-
pend on the stress fields of the earth’s crust. Most earth-
quake faults belong to the mixed-mode faults. The
theoretical values of fractal dimensions of earthquake
faults are in good agreement with the experimental re-
sults.

IV. CONCLUSION

The Turkevich-Scher theory is extended to study the
2D DBCG models. It is found that if the boundary con-
dition at infinity is not uniform, the cluster will evolve
into a needle shape with D =3; if uniform, the models
can be decomposed into modes I, II, and III, with
D=1.575, Dy=2, Dy=171, D=PD,+P,Dy
+ Py Dy These predictions are consistent with com-
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puter simulations. The models are used to model the for-
mation of earthquake faults. It is predicted that there ex-
ist three kinds of earthquake faults, including models II
and III as well as a mixture of modes II and III, with
D=Dy=2, D=Dy=171, D=PyDy+PyDy
=1.71-2, respectively. These predictions are in good
agreement with the experimental data.

APPENDIX

We calculate exponents of stress fields at a sharp notch
tip. The notch coordinate systems are shown in Fig. 3.

For mode III, u;=0, u,=0, u3;=u4(x,,x,), and the
Lamé equation reduces to the Laplace equation [10,12]

Auy=0. (A1)

According to the complex variable theory, for any analyt-
ic function f(z)=u(x;,x,)+iv(x,,x,), its real and
imaginary parts satisfy the Laplace equation. Thus we let
1 -

u3=;[f(z)+f(f)], (A2)
where u is the Poisson’s ratio, z =x; +ix,, Z=x; —ix,,
and f(Z)=u(x,,x,)—iv(x,x,). If we use variables z,7
to replace x ;,x,, thus strain components become

ey, = 5‘;[f'(z>+f’<f>] ,

; _ (A3)
532:Z[f'(z)_f'(7)] .
Therefore
03— i0,=2f"(z) . (A4)
Consider the analytic function
f2)=(4 +iB)z**1, (A5)

where A4, B, and A are real constants to be determined.
For finite displacements at the notch tip, A> —1. The
substitution of Eq. (AS5) into Eq. (A4) yields

031 —i03,=2(A+1)r (4 +iB)( cosAO+i sinAh) ,

thus

X2

FIG. 3. The notch coordinate systems.
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031 =2(A+1)r*( 4 coshO—B sinA) ,

(A6)
03,=—2(A+1)r"( A4 sinA@+ B cosA0) .

The boundary condition that crack surfaces be traction
free requires that

P

o pto;tan 5 =0. (A7)

O0=t(r—¢@/2)

This leads to

a,A+a,B=0, a, 4 —a,B=0, (A8)
where a,=sinAf,—tang /2 cosAb,, a,= —cosAf,
—tang /2sinA6y, 6,=m7—¢ /2. Thus we have
a, a
=0 (A9)
—a, a
or sin(2A6,—¢)=0. So
=T = 1,0,1,2,..) . (A10)

B 2r—¢@
For a plane problem (modes I and II), u,=u(x,,x,),

U, =u,(xy,x,), and u;=0, the equilibrium equations
reduce to [10,12]

do do do do
11 2 _g 21 2 _ (A1D)
0x ox, ox Ox,
The solutions to these equations are
% %y 3%y
ON=""5, Op=——"T—42—, Op=—"", (A12)
11 ax% 12 axlaxz 22 ax%

where y = x(x,x,) is called Airy stress function. Thus

E

optop= (1+p)(1—20)

(e111€5,)

B g
(I+p)1—2u)
=Ay . (A13)
Making use of the Lamé equation AV-# =0, we have
AAY=0. (A14)
Since Ay satisfies the Laplace equation, thus
2 —_—
Ay=43X — )+ (7). (A15)
0z9Z
Integrating this equation, we have
)(:—;—[EQ(Z)+Z§(E)+a)(z)+&‘)(E)] . (A16)
where (z) and w(z) are analytic functions. Thus
0, +0,=2[Q'(2)+Q'(2)],
— — — (A17)
0y~ i0,=Q(2)+Q(Z)+zQ"(Z)+"(Z) .
The boundary condition is
alzialltan% =0,
0=+(r—g/2) (A18)
022i021tan£ =0.
2 O=x(r—@/2)

For mode I, due to symmetry with respect to the notch
plane, we choose a solution of the form

Q= Az o'=Bz*! (A19)

where A, B, and A are real constants. For mode II, we

choose
Q=iAz*"! o'=iBz*"!. (A20)

Following the same procedure, we obtain for modes II
and I

sin(A+1)27—¢@)=x(A+1)sin(27r—¢) . (A21)
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